有珠山の空振活動に伴って現れる地震波の特徴

青山 裕・大島弘光・前川徳光(北大・理・地震火山センター) Seismic signals associated with the volcano acoustic activity at Mt. Usu H.Aoyama, H.Oshima and T.Maekawa (UVO-ISV, Hokkaido Univ.)

1. はじめに

2000年の有珠山噴火では、広範囲にわたって 地殻が隆起し、おびただしい数の火口が出現した が、1977年から始まった前回の噴火とは異なり、 火山の活動度を表す目安となる地震活動や地殻 変動は活動開始から1ヶ月ほどの間に急激に収 束に向かった。この期間に、西麓および北西麓に 開いた火口では、上空3000mまで噴煙をあげる 噴火、噴水のようにジェットを吹き上げる噴火、地 の経過と共に様々なタイプの噴火が見られた。特 に、地表面近傍で泥塊が飛び散る炸裂タイプの 噴火は地震活動や地殻変動が収束した後も継続 し、北西麓の金比羅山火口では11月頃まで見る ことができた(図1)。

図1 金比羅山火口(A火口)で10月に撮影された 炸裂タイプの爆発。

このようにバラエティーに富んだ噴火様式が見ら れた 2000 年の有珠山噴火に際して、北大・理・ 地震火山研究観測センター(火山活動研究分野) では、有珠山周辺の定常地震観測点に低周波マ イクロフォンを併設し、地震動のデータと共に空気 振動のデータの収集を行った。本研究集会では、 有珠山の 2000 年噴火で観測された表面活動、 空振活動、およびそれに伴うと考えられる地震動 について報告を行う。

2. 空振活動

北海道大学大学院理学研究科附属地震火山研究観測センター(有珠火山観測所)では、 0.1Hz~1000Hz で平坦な音圧感度を持つ(株) アコー製の超低周波マイクロフォンと音圧計測増幅器(TYPE7144/3348)を有珠山周辺の6点に設置した(うち1点は2000年4月14日から)。 空振信号は固有周期1秒の短周期地震計 (Mark Products L4-3D)で得られた信号と共に 白山工業(株)製のLT8500(22bitA/D)もしくは LS8000SH(16bitA/D)を用いて100Hzサンプリングのwin形式に変換され、専用回線を経由して 有珠火山観測所へ伝送された。

低周波マイクロフォンには、特に炸裂タイプの噴 火に伴って発生するパルス状の空振が多数とらえ られた。図2にはパルス状の空振が発生していた 時間帯の空振波形例と、空振の自動検知に用い たフィルター波形およびその結果を示す。2000 年4月~6月の3ヶ月間の三豊観測点における 空振データから自動検知されたパルス状空振の 個数は146万2500回にのぼった。

図 2 空振の生波形(raw)、4~8Hz のバンドパスフ ィルターを施した波形(0408)、16~32Hz のバンド パスフィルターを施した波形(1632)、それらを用いて 自動検知された空振の発生時刻および振幅(trg)。 a) 2000年4月22日0時30分からの1分間、b) 同 日の0時40分からの1分間。〇印の2つを除いて パルス状の空振を検知している。

3. パルス状空振の音源および震源位置

以上のように大量に発生したパルス状の空振 は、複数の観測点で到達が確認された。同一の 爆発によって励起されたと見なされるパルス状の 空振を抜き出してその到達時刻を手動で読みとり、 4月8日~25日のデータについて空振の音源決 定を行った。大気中の音波速度は340m/secの 一様とし、音源を地表面に固定して最小二乗法に より水平方向の音源位置を求めている(図3)。音 速が遅いため、1km程度しか離れていない両火 口での活動を明瞭に区別することができる。4月 中は両火口でパルス状空振が発生していたこと が分かる。

図 3 西山火口群および金比羅山火口群の位置に 重なるように求まった空振の音源分布。

これらのパルス状空振の1つに注目して、空振 の発生時刻を時間の原点としたペーストアップを 描いたのが図4である。これは2000年6月6日 1時1分16.2秒に発生したパルス状空振で、各 観測点への到達時刻は音速340m/secの直線に 良く一致する。下図は同時刻の地動のペーストア ップで、2Hz以下のバンドパスフィルターを施した 地動速度波形と生の波形を描いた。ここでは 2.0km/sec、1.04km/sec、0.34km/sec で伝播す る信号の予想到着時刻が実線で描いてある。 0.34km/sec の信号の予想到達時刻付近ではパ ルス状の地動が励起されていることが分かる。こ のパルス状の信号は、空気中を伝播してきた圧力 波によって励起された地動であると考えられる。し かしながら地動波形を見ると、明らかに空振の信 号よりも先に比較的長周期の波が到達しているこ とが分かる。実線で示した信号の予想到着時刻の うち、Vp=2.0km/sec は各観測点への地震波の 初動到達時刻から推定した P 波の見かけ速度で あるが、2.0km/sec に対応する実線は距離 0km のところで空振の発振時刻とよく一致する。このこ とは、パルス状空振に先行して現れる長周期の地 動が空振とほぼ同時刻に音源と同じ位置で励起 されていることを示唆している。

図 4 上) 三豊(MIT)、大平(OHD)、立香(TAT)、 仲洞爺(NAK)における空振記録。破線は音源決定 によって推定されたパルス状空振の発振時刻。下) 同時刻の三豊、立香、仲洞爺における地動速度波 形。大平の地動は S/N が悪いため示していない。

P波速度(Vp)が2.0km/sec、P波とS波の速度 比(Vp/Vs)が1.73である半無限媒質を仮定した ときのレイリー波速度(Vr)が1.04km/secである。 三豊ではレイリー波の到着予想時刻前後から、 2Hz 程度の低周波で大振幅の信号が現れている ことが分かる。あまり明瞭ではないが、立香でも同 様に地動速度波形の振幅が大きくなっている。し かしながら仲洞爺ではこの波の到着を見ることが できない。

4. パルス状空振に伴う地震動

次に同じパルス状空振について、三豊の空振 および地動の記録を拡大する。図 5a は空振、地 動速度3成分、地動変位3成分で、図 5b は地動 変位の粒子軌跡である。粒子軌跡は変位波形に 破線で示した2つの時間領域内について描いて おり、左から順に上下-南北断面、上下-東西 断面、東西-南北平面を示す。三豊から見て音 源となる金比羅山火口群の方向はおよそ東南東 であり、図 5b-1の平面図にその方向を矢印で示 した。また変位波形の UD 成分には、 Vr=1.04km/secと仮定したときの到着時刻を"Sr" として示した。

パルス状の空振は1時1分25.5秒頃三豊観測 点に到達し、地動にもほぼ同時刻に高周波信号 が現れている。しかし地動にはパルス状空振の到 着前からおよそ 2Hz 前後の信号が現れ、特に NS 成分に比べて UD 成分と EW 成分の信号が 早く現れている。これは NS 成分が火口からみて ほぼ transverse 成分に相当するためと考えられ る。伝播方向の粒子軌跡を見るために図 5b-1 の 上下一東西断面に注目すると、Vr=1.04km/sec で予想される到着時間(1時1分19.2秒)には地 動変位は prograde 的な振動をしていることが分 かる。しかし、図 5 中に"Or"で示した 1 時 1 分 19.7 秒頃からはレイリー波の到来を示す retrograde 的な大きな楕円型軌跡を描く。音源 からの距離が約 3km と比較的近い三豊でこのよ うに大きな振幅のレイリー波が現れるということは、 地震の震源が浅いということを示唆している。その 後の粒子軌跡(図 5b-2)では軌跡は安定せず、 水平面内では北西南東方向(transverse 方向) へ大きく振動したり円を描いたりするような軌跡を

示している。三豊で確認されたレイリー波と考えら れる波が図4下段の立香や仲洞爺で明瞭に見え なかったのは、観測点が火口から見て有珠山の 裏側にあたるため(立香)や、伝播経路の途中に 洞爺湖が存在するため(仲洞爺)であろう.

図 5 a) 三豊における空振、地動速度、地動変位 波形。b) 地動変位波形の波線で囲んだ時間領域 における粒子軌跡。図中の"Sr"、"Or"はそれぞれ Vp=2.0km/sec から予想されるレイリー波の到達時 刻と、実際に retrograde の波が到達した時刻を示 す。

5. 噴火やジェットに伴う空振および地震動

有珠山の2000年の噴火では、3月31日13時 8分頃に西山の西麓で最初の噴煙柱があがった。 この噴煙柱は高度約3000mに達し、北東方向へ 多量の火砕物を降下させた。しかしながら、この 噴煙柱が立ちのぼり始めた時刻には、我々が設 置していた低周波マイクロフォンに信号と思われ るデータはとらえられていない。また地震データに ついても同様で、火口からのおよそ3kmの距離 にある三豊観測点でも噴煙柱が立ちのぼり始め た時刻に明瞭な信号は見られない。しかしながら、 15時台になると火口活動に対応すると考えられる 規則的なノコギリ状信号が空振記録に現れ始め た。対応する時刻の地動記録にはノコギリ状の信 号が見えないため、この信号は地表面から離れた 上空で励起されていたのかもしれない。

また、4月上旬にはコックステール状の物質の噴 出を起こすジェット型の噴火が盛んに発生した。し かしながら、ジェット型の噴火が頻発した時期の空 振および地動の振幅は、その後の炸裂タイプの 空振が発生した時期に比べて小さく、個々のジェ ット型の噴火に対応するような明瞭な信号は見る ことができなかった。

これら噴煙柱をあげる噴火やジェット型の噴火 が発生していた期間のデータについては、これか ら詳しく検討を行う予定であり、本集会では記録 例を示すにとどめる。

6. まとめと課題

ここではパルス状空振の到来に前だってレイリ 一波的な波の到達が見られることが確認された。 この波が1回の炸裂タイプの爆発に伴うと考えた 場合、震源における爆発の時間関数は比較的単 純なパルスから成ると推測される。しかしながら、 実際に観測された地震波の粒子軌跡は複雑な挙 動を示す。震源時間関数が単純であると考えられ るにもかかわらず波形が複雑になる理由の1つは 地下構造の不均質性であろう。加えてもう1つ重 要であろうと考えられるのは空振自身による地動 の励起である。図4や図5で示したようにパルス 状空振自身が地動を励起していることは明白であ る。パルス状空振は周囲に伝播する過程で連続 的に地動の励起をしていると考えられる。地表面 を移動する力源によって励起される地震波が持 つ特性を明らかにしておくことは、表面現象を伴う 爆発地震の研究を進めていく上で重要なテーマ の1つであろう。