雲仙岳溶岩ドーム成長過程における地震活動の性質 馬越孝道(長崎大・環境)

Seismic activity during the growth of a lava dome at Unzen Volcano Kodo Umakoshi (Environmental Studies, Nagasaki University)

1.はじめに

雲仙普賢岳は 1990 年 11 月 17 日に噴火を開始, そ の後, 1991 年 5 月から 1995 年 2 月まで, デイサイト 質溶岩ドームを成長させた.このドーム成長過程では, ドーム直下で大量の地震が発生した.しかし, 全期間 を通じてのその地震活動の実態は未だ十分には解明 されていない.現在, そのデータ解析作業を続けてい るところだが, この報文では, これまでに明らかにな った,ドーム成長過程での地震活動の性質について述 べる.

2.データ

解析対象とした期間は,1991年5月~1995年2月 である.普賢岳周辺での地震観測点の配置を図1に示 す.このうちFG1,FG2,FG3は1991年5月のドー ム出現以前に設置されていたものである(FG3は, 1993年6月,FG4に移設された).本研究には,主に FG3およびFG4のデータを用いた.これらの観測点 には,1Hz上下動の地震計が設置されており,デー タは,九州大学島原地震火山観測所(現・地震火山観 測研究センター)にテレメーターされ,サンプリング レート100Hzでデジタル連続収録された(Shimizu et al.,1992).

解析ではまず,FG3(FG4)での地震波到着時刻を もとにイベントリストを作成した.その基本となる手 順は,波形の振幅変化にもとづく自動検出とその後の 人の目によるノイズ除去である.ただし,1991年5

図1 観測点配置.地形図は国土地理院による。

月のみは,連続波形をすべて人の目でチェックし,読 み落としの追加や初動時刻の修正をおこなった.また 後述するように,期間を通じて多くの相似地震の発生 がみられたため,そのような地震については,連続波 形データから相似波形の精査をおこない,拾い落とし をなくすとともに,初動時刻の高精度化を図った.

3. 地震回数

今述べた方法で得られた日別地震回数を図2に示 す.図の上の数字付の縦棒は,外成的成長による各ロ ーブの出現日を示している.期間を通じて地震活動の 消長は激しいが,この図にみられる地震の発生形態の 違いを,次の4つの期間に分けて比較する.

- ()1991年5月~10月中旬
- ()1991年10月下旬~1993年1月
- ()1993年2月から8月
- ()1993年9月~1994年8月

これらの期間のうち,とは,数日~数週に わたって著しく地震回数が増加した時期のある 一方で,回数が極めて低下した時期も存在する. 他方, と では,回数の消長が比較的長い周期 で起こり,回数が低下した時期であってもある程 度の活動レベルを保った.山科(1996)による日 別溶岩噴出量グラフとの比較では, と の期間 は噴出量が相対的に高いレベルで横ばいに推移 したのに対して, では減少傾向, の 1994 年 春以降では噴出量がかなり低下した状態になっ ている.これまでの研究から,ドームの成長様式 として,溶岩噴出量が多い時期(>20万㎡/日)で は外成的成長が主となり,それを下回ると内成的 成長の起こることが指摘されている (Nakada et al., 1999).また外成的成長では,新ローブの出現 前後に地震が多発するもののローブ成長中はそ れが著しく減少し,対して内成的成長期には地震 活動は定常化したことが知られている.今回の結 果は概ねこれらの観測事実を裏付けるものとな っているが,外成的成長期であっても,新ローブ の出現とは別に地震回数の増加した時期もあり、 その原因や表面現象との対応については未調査 である.

4.波形の分類

雲仙岳の火口直下(ドーム付近)で発生した地 震は,これまで,卓越周波数 1~5Hz の低周波 (LF)地震と5~10Hzの高周波(HF)地震に分 類されてきた(Nakada et al., 1999).本研究で は試みに,1~4HzをLF地震,4~7HzをMF地 震,7~10HzをHF地震として,スペクトル解析 により波形を分類した.計算区間は初動時刻の 0.5秒前から5.12秒間である.なお,高周波の揺 れと低周波の揺れが連結したハイブリッド型の 地震であっても,現状では計算機の自動判別によ り上の分類のどれかに入っており,特別の考慮は していない.

解析の結果, 概略的には, 1991年5月(HF), 1991年6月~1993年8月(LF),1993年9月~ 10月(MF), 1993年11月~1995年2月(HF) の発生が特徴的であることが明らかになった.た だしこの中で,HF地震が多く見られた期間では, 同程度に LF 地震が発生していた場合もある.し かし,LF とした期間についてはほとんどが LF 地震であり,HF,MF地震はあまり発生していな かった.この波形タイプの違いを前節の ~ の 期間との対応でみてみると,地震が定常的に発生 しドームの内成的成長が活発であった と で は, がほとんど LF 地震であったのに対し, では HF 地震が多くなっていた . はドーム成長 末期でドームが巨大化し、内部温度も低下して、 火道内のマグマがより動きにくい状態になった ことがこの違いに関係したと思われる.

5. 相似地震

各地震について,前後24時間以内に発生した 地震それぞれとの相関係数を求め,その値が0.6 以上であった地震の数をプロットしたものを図 3に示す.非常にたくさんのピークがみられ,お のおの相似地震群または時間とともに波形がわ ずかずつ変化する地震系列(地震グループ)(馬 越・他,2002)の出現を示している.

これらの地震グループの波形は,HF地震,MF 地震,LF地震いずれもの場合もあるが,HF地震 が多発した時期にはグループが多数同時に出現 していることが多く,対してLF地震活動が活発 な時期には,地震数が多い割には少数のグループ しか出現していないという特徴がみられた.図4 には,各月において,図3の値が最大となった地 震の波形を示す.

6.1991年5月の地震活動

溶岩ドームの出現した 1991 年 5 月の地震につ いては,連続記録を人の目ですべて見直してイベ ントリストを高精度化した上で,解析をおこなっ た.図5に,5月11日~31日での6時間ごとの

図4 図3において,月ごとに値が最大であった地震の波形(1991年5月~1994年10月).1991年5 月はHF地震,その後LF地震が続いたが,1993年後半からはMF地震やHF地震が多くなった.波形 の上の数字は,波形データの最大振幅.

地震回数を示す.地震回数は5月17日夜にピークに 達しており,実際のドーム出現日と考えられる19日 (Yamashina and Shimizu, 1999)には,回数はすで に減少傾向にあった.ただしこの期間のFG3の波形 データでは,波形の振り切れているものが多かったた め,地震の規模に関する解析はまだおこなっていない. 図6には,図3の91年5月の部分を拡大した図を 示す.この中には,プロットの密集した線状分布や山 型の分布が複数みられ,これらがそれぞれ前述した地 震グループに対応すると考えられる.これらを馬越・ 他(2002)の方法で分離したところ,地震数100個以上 のグループが30個見つかった.図7は,その30個の

グループについて,6時間ごとの地震回数の推移をま とめたものである、太線は、地震数 500 個以上のグル -プ(主要グループと呼ぶ)である.また図8には, 主要グループについて,図6での山型のピークに対応 する地震(グループ検出の際,マスターイベントにな る)の波形を示す.図7によると,地震回数がピーク に達した 17日には,主要グループの多くが活動中だ ったことがわかる.これらの主要グループは,その後 次第に活動を低下させていったが,5月22日前後に 別の2つのグループが出現し一気に活動を活発化さ せたため,図5での5月22日の地震回数の再増加に なった.また図8をみると,この5月22日のグルー プは LF 地震であり,他の主要グループがすべて HF 地震であることと対照的である.噴火現象との対応で みると,5月22日は,溶岩涌きだし口が最初の地獄 跡火口から東側斜面に移動しつつあった時期と見ら れ,この LF 地震グループは,その後の第3 ローブや 第4ローブの出現時にみられた LF 地震の増加と同様 に,溶岩の新しい出口形成の過程で発生していた可能 性がある.

7.おわりに

この報文では,雲仙岳溶岩ドーム成長過程の地震活動についての最近の解析結果をまとめた.現状では, イベントリストが全期間均質でないなどの問題点も あり,今後データの均質化を図るとともに精度を高め て解析を続ける予定である.

この報告内容は,長崎大学と九州大学の共同研究成 果(Umakoshi et al., 2005a; 2005b)をまとめたもの です.

引用文献

- Nakada, S., Shimizu, H. and Ohta, K., 1999, J. Volcanol. Geotherm. Res. 89, 1-22.
- Shimizu, H., Umakoshi, K., Matsuwo, N. and Ohta, K., 1992, Unzen Volcano, the 1990-1992 Eruption. The Nishinippon & Kyushu University Press, 38-43.
- 馬越孝道・清水 洋・松尾のり道,2002,火山,47,43-55
- Umakoshi, K., Shinzato, N., Ohshima, M., Matsuwo, N. and Shimizu, H., 2005a, Unzen workshop 2005, in press.
- Umakoshi, K., Takamura, N., Uchida, K., Matsuwo, N. and Shimizu, H., 2005b, Unzen workshop 2005, in press.

山科健一郎, 1996, 月刊地球, 号外15, 76-81.

Yamashina, K. and Shimizu, H., 1999, J. Volcanol. Geotherm. Res. 89, 43-55.

