昭和火口と南岳火口の火山ガスHCl/SO₂比の推移(3)

森 俊哉

東京大学大学院理学系研究科

要 旨

桜島火山では、昭和火口と南岳火口の二つの火口から噴煙を継続的に噴出しており、昭和火口では活発な噴火活動が続いている.2009年11月以降遠隔FT-IR測定で、昭和火口と南岳火口の火山ガスのHCl/SO₂比測定を繰返し行ってきた.噴火活動の活発な昭和火口のHCl/SO₂比は0.1-0.175とほぼ安定して推移している.一方、南岳火口の値は昭和火口の値より高く、通常0.25以上であるが、2010年と2011年の2年間は低い値で0.2以下で推移した.この期間は、南岳の表面活動が弱かった時期に対応している.

キーワード: 桜島火山, 火山ガス, 遠隔測定

1. はじめに

火山ガスの化学組成は、火山地下のマグマ組成を 反映するだけでなく、マグマの移動を反映して変化 すると考えられている. 桜島火山では、2009年以降、 遠隔FT-IR観測により、火山ガスのHCI/SO₂比の測定 が繰返し行われてきた(森、2010、2011、2012). 桜島火山は、南岳火口と昭和火口の二つの火口から 火山ガス放出を続けている. これまでの観測では、 二つの火口の HCI/SO₂比が異なることがわかったと 伴に、昭和火口の組成比は0.1-0.175と比較的安定し て推移していることが明らかになっている(森,2010, 2011、2012).

2012年度も、これまでに引き続き遠隔FT-IR観測に より、2つの火口から放出される火山ガスのHCl/SO₂ 比の測定を実施したので、その結果を報告する.

2. 桜島火山での測定装置と観測方法

桜島火山における観測では、これまでと同様に米 国MIDAC社のAir Monitoring System (AM System)の 赤外分光計本体に設置角度可変の鏡を取り付けて使 用した.この鏡の向きを調整して火山噴煙を透過し てきた太陽光を入射窓に導入することで、火山ガス による吸収を受けた赤外スペクトルを測定する.そ のため、太陽、火山噴煙、測定器を一直線に結ぶ位 置に移動して測定を実施する必要がある.先述のよ うに桜島火山では2つの火口が噴煙を上げているた め、2火口から数km移流してきた噴煙の遠隔FT-IR測 定を行っても、2火口の噴煙が混合した状態でしか測 定できないため、2火口の火山ガスの組成をそれぞれ 定量することは難しい.そこで、2009年からの観測 では、桜島火山山頂の背後に沈む太陽を利用するこ とで、二つの火口の噴煙をそれぞれ別けて測定を行 なってきた(森、2010).例えば、南岳火口の火山 ガス組成を測定する場合は、北よりの風の日を選び、 南岳火口に太陽が沈む位置に移動し、太陽が南岳火 口からの噴煙の裏側に入るときに測定を行うことで 南岳の噴煙だけを測定することが可能となる.

桜島山頂に沈む太陽を使用するため、観測は火口 の東側から北東側の地点にて実施することになるが. 実際の観測地点は,観測日時,観測当日の噴煙状況, 風向・風速状況を考慮して決定することになる.こ のため,時刻の経過や気象・噴煙状況の変化に応じ て観測地点を変えながらの観測も必要となる場合が 多い.2011年度の観測以降,観測手法を工夫するこ とで,新しい観測点に移動して到着後数分で測定を 開始することできるようにした(森,2012).

森(2010)では、測定した赤外スペクトルの解析 に、森・野津(2005)の解析手法によるオリジナルの ソフトウェアを用いていたが、2010年度以降の解析 には、イタリアINGVピサのBurton 博士が作成した ソフトウェアFTIR_FITを使用し、火山ガス成分の SO₂とHCIの2成分を定量している.

3. 観測結果

2012年度は、2012年12月19日、2013年2月20日、2 月21日、3月14日および3月15日の延べ5日、遠隔FT-IR 観測を実施した.本報告では、2013年2月21日の観測 を例として報告する.

3.1 2013年2月21日の観測

観測は、15:15から17:10の時間帯に図1の5ヶ 所の観測点A-E点で実施した.この日は、快晴 で、噴煙は北西の風で、南東方向に流れていた. 観測時間帯の昭和火口は、エアロゾルを多く含ん だ噴煙を連続的に放出しており、時々灰を含んだ 大き目の噴煙が見られた.南岳の噴煙はほぼ透明 で、エアロゾルによりうっすらとではあるが目視 することができた.図2に、16:36に観測点Bか ら撮影した噴煙の様子を一例として示す.

測定は15:17~16:05に図1のA点(京都大学防災研 究所・黒神観測室),16:28~16:40にB点,16:44~16:45 にC点,16:52~16:58にD点,17:03~17:07にE点でそれ ぞれ実施した.また,それぞれの観測点(A~E点)での 観測時間帯をI~Vであらわすこととする.3月21日の 二酸化硫黄カラム量とHCI/SO2比の時間経過を図3に 示す.

Fig.1. A map of North Eastern part of Sakurajima showing the locations of observation sites A–E (solid circles). A solid square and a triangle show Showa and Minamidake craters, respectively. Latitude and longitude (lat., lon.) of lower left and upper right corners of the map are (31.57°N, 130.65°E) and (31.63°N, 130.72°E), respectively.

Fig. 2. A photo of the volcanic plumes from Showa and Minamidake craters. The photo was taken at 16:36 from observation point B in Fig. 1.

Fig. 3. Temporal variations of SO_2 column amount (upper) and HCl/SO₂ ratio (lower) between 15:10 and 17:15 on Mar. 21, 2013. Roman numerals above the plots show the observation periods I ~ V (see text).

I期は,京都大学防災研究所の黒神観測室(図1のA 点)から測定を行った.この時間帯は,太陽高度も まだ高く,山頂より2km程度流れた噴煙を測定して いたため,昭和火口と南岳火口の噴煙が混合した噴 煙を測定していたと考えられる.このため,観測さ れたHCI/SO₂比の変動0.1-0.25は,測定している噴煙 の部分における2つの噴煙の混合比の変化で説明す ることができる.

II期およびIII期の測定は、図1のB点とC点でそれぞ れ行った.両時間帯とも観測点から見た太陽は、昭 和火口上空に位置し、ほぼ真上に上昇した昭和火口 の噴煙を測定したいたことになる.若干ではあるが、 南岳火口の噴煙も昭和火口の噴煙の裏側にあったと 考えられる.比較的規模の大きい昭和火口の噴煙が 上昇し太陽の手前にかかったとき(SO₂カラム量が 高くなったとき)にHCl/SO₂比が0.15に近づいている ので、この日の昭和火口HCl/SO₂比は約0.15であった と考えられる.一方, I期の15:20ごろにSO₂カラム量 が1×10¹⁹ molec./cm²に達するピークが見られるが,こ のピークはHCl/SO₂比が0.1と明らかに0.15より低い 値を示している.このピークも他のピーク同様昭和 火口から放出された比較的強い噴煙によるものと思 われるが,明らかに比の値が異なる理由は不明であ る.目視観測では,昭和火口内には少なくとも2ヶ所 のベントがあるようであるが,0.1のHCl/SO₂比は通 常測定しているのとは別のベントから放出された噴 煙である可能性も否定できない.今後、昭和火口内 の噴出状況を確認しながらの測定が必要である。

IV期およびV期は、観測点から見て太陽が南岳上 空および南岳背後に沈む直前の測定に対応する. IV 期では、太陽は昭和火口の噴煙を抜けて、南岳火口 の噴煙の裏に位置していたが、昭和火口の噴煙の影 響はまだ受けていたようである. IV期の中央付近に 南岳火口の噴煙によりSO2カラム量の高まりが見ら れるが、これに対応してHCl/SO2比が上昇しているの がわかる.また、V期は南岳の北側の直上に太陽が 位置していたので、昭和火口の噴煙の影響は受けて いなかったと思われ、HCl/SO2比が0.32-0.47と明らか に昭和火口の値よりも高い値を示している.以上か ら、この日の南岳火口のHCl/SO2比は約0.37であった と推定される.

4. 昭和火口と南岳火口のHCl/SO2比の推移

図4に2009年以降の遠隔FT-IR観測の結果を示す. 昭和火口の火山ガスのHCl/SO₂比は,観測を開始した 2009年11月から2013年3月まで,2010年末(HCl/SO₂ 比0.175)を除き,0.1-0.15で安定して推移している. 2006年以降活発な噴火活動を続けている昭和火口は, 少なくとも観測を行った時期に関しては,地下のガ ス供給システムが安定した状態にあったものと推察 される.一方,南岳火口の火山ガスのHCl/SO₂比は観 測当初は0.2以上を示していたが,2010年度の観測で は0.15程度まで下がっていた.2011年11月までは少 なくともこの傾向は続いていたようである.その後、 2012年に入ってからHCl/SO2比は0.3まで上昇し, 2013年3月までは0.3以上で推移していたようである. 特に,2013年2月20日と21日には,0.37以上と高い値 を示している.

2009年以降の南岳火口の表面活動を見ると(気象 庁, 2009, 2010, 2011, 2012, 2013), 2009年は10 月までに爆発的噴火3回を含む,19回の噴火が記録さ れているが、2010年と2011年の2年間は2011年2月の2 回の爆発以外噴火はなかった.その後,2012年には、 7月と12月に爆発が記録されている.日最高噴煙高度 では、2009年は10月まで比較的頻繁に噴煙が目視さ れているが、2009年11月から2012年11月の2年間は、 爆発のあった2012年2月以外,日噴煙高度の観測値が 一度も報告されていない. 2012年12月以降は, 2009 年ほど頻繁ではないが, 日噴煙最高高度の報告が時 折見られている.また、気象庁の火山活動解説資料 によると、南岳火口では、高感度カメラで見られる 微弱な火映現象が2012年3月,5月,6月に観測されて いる一方で、2010年12月から2011年8月まではA火口 やB火口に水がたまっているのが空中写真で確認さ れている.以上から、2010年から2011年の2年間は南 岳火口の表面活動が非常に低調だったことがわかる. 南岳火口のHCl/SO2比が0.2以下と低かったのは、こ の表面活動が低調であった期間と対応しているので, 南岳火口の噴煙は火道マグマヘッドの低下や山頂部 の熱水系の影響を受けていた可能性が示唆される.

なお、2011年度の測定では、南岳火口のA火口とB 火口のHCl/SO₂比が異なる値を持つことが明らかと なったが、2012年度の測定では、観測条件に恵まれ ず、A火口とB火口を別けた形で測定することはでき なかった.

Fig. 4. Observed temporal variations of HCl/SO₂ ratios for volcanic gases of Showa and Minamidake craters.

5. まとめ

2009年11月後半から,遠隔FT-IR測定による昭和火 口と南岳火口の火山ガスのHCl/SO₂比の測定を繰返 し行ってきた.これまでの測定で,昭和火口と南岳 火口A火口とB火口で異なる比の値を持つことがわ かってきた(森,2010,2011,2012).HCl/SO₂比の推 移をみると,昭和火口は一部の機関を除いて0.1-0.15 と比較的安定している.これは,昭和火口では活発 な噴火活動が表面では続いているが,地下の火道系 としては安定した状態を保っていることを示唆して いる可能性がある.一方,南岳火口の比の値は相対 的に変化が大きい.2010年と2011年の2年間は,比の 値が0.2以下と低い値で推移した.この比の低い期間 は,南岳の表面活動が低調であった時期に対応して いる可能性が示唆される,今後も観測を続け表面現 象や他の観測データとの関連を注視していきたい.

謝 辞

桜島での観測に当たっては,京都大学防災研究所 火山活動研究センターの方々には大変お世話になり ました.ここに記して御礼申し上げます.

参考文献

気象庁(2009) 桜島の火山活動解説資料(平成21年12 月). 気象庁(2010) 桜島の火山活動解説資料(平成22年12 月).

- 気象庁(2011) 桜島の火山活動解説資料(平成23年12 月).
- 気象庁(2012) 桜島の火山活動解説資料(平成24年12 月).
- 気象庁(2013) 桜島の火山活動解説資料(平成25年4 月).
- 森 俊哉・野津憲治(2005):浅間山噴煙中の火山ガ ス化学組成の遠隔観測,火山 第50巻第6号,pp. 567-574.
- 森 俊哉 (2010): 遠隔FT-IR測定による昭和火口と南 岳火口の火山ガスHCl/SO2比, 桜島火山における多 項目観測に基づく火山噴火準備過程解明のための 研究 平成21年度報告書, 71-76.
- 森 俊哉(2011):昭和火口と南岳火口の火山ガス HCl/SO2比の推移, 桜島火山における多項目観測に 基づく火山噴火準備過程解明のための研究 平成22 年度報告書, 87-92.
- 森 俊哉(2012):昭和火口と南岳火口の火山ガス HCl/SO2比の推移(2),桜島火山における多項目観測 に基づく火山噴火準備過程解明のための研究 平成 23年度報告書,12.
- Notsu, K. and Mori, T. (2010) Chemical monitoring of volcanic gas using remote FT-IR spectroscopy at several active volcanoes in Japan. Appl. Geochem., Vol. 25, 505–512.

Remote FT-IR measurements of HCl/SO₂ ratios in the volcanic plumes of Showa and Minamidake craters, Sakurajima volcano, Japan (3).

Toshiya MORI

Graduate School of Science, The University of Tokyo

Synopsis

Sakurajima volcano is continuously emitting volcanic gas from two craters, Showa and Minamidake craters, since the reactivation of Showa crater in June 2006. HCl/SO₂ ratios of the volcanic gas from the two craters have been monitored intermittently by remote FT-IR observations since November 2009. The HCl/SO₂ ratio of the active Showa crater has been stable between 0.1 and 0.15. In contrast, the temporal variation of the ratio of Minamidake crater is relatively large and the ratio (usually above 0.25) is usually larger than that of Showa crater. The ratio of Minamidake crater was considerably lower for 2010 and 2011, corresponding to low surficial activity period of the crater.

Keywords: Sakurajima volcano, volcanic gas, remote measurements