Ground deformation detected by GNSS observation at Sinabung and Merapi volcanoes Takahiro OHKURA, Masato IGUCH

Kyoto University

Objectives of G1-1 Volcano Monitoring

Develop observation system for prediction and real-time estimation of discharge rate of volcanic products.

GNSS receivers, 3-components short period seismometers and a tiltmeter were installed at each volcano.

Ground deformation detected by **GNSS** will be used for evaluation of volcanic activity.

GNSS Data analysis

*Hourly solutions for a real time monitoring

 Automatic quick static analysis to get baseline length using a GNSS software, Leica Spider

For a better evaluation of volcanic activity

*Post processing to get precise daily coordinates -Precise point positioning(PPP) using GIPSY-OASIS II Ver.6.1.2 (JPL, NASA)

GNSS stations in Sinabung since Feb. 2011

3 stations around the summit(3-5 km apart) 6-10 km away from the base station.

Temporal change of slope distance, Sinabung (2011.03-2011.10)

No deformation detected.

No volume change of the magma chamber.

FIX SNBG (POS Sinabung)

Analysis every 1 hour Solid dots: night time observation (22:00-03:00)

Evaluation of activity of Sinabung as of Nov. 2011

- No significant deformation was detected although many volcanic earthquakes occurred and volcanic gas emission continued.
- It is possible that magma supply magma chamber is almost econsumption rate of magma (e.g. 300 ton/day SO₂ emission 1~2*10⁶m³ /year magma consumption depth in Aso volcano, Japan)
- Magma supply on go To be monitored care runy.

Resume of Phreatic eruption Sep. 2013

Eruption on Sep. 17, 2013

Magma migration process

Baseline length from SNBG

2014

Displacement w.r.t. SNBG June 2012 ~ June 2015

Station elevation Jan 2011 ~ June 2015 Lava appeared

Displacement w.r.t. SNBG Nov. 2013 ~ June 2015

Deformation source location assuming single Mogi source

Deformation source location assuming single Mogi source

Deformation source location assuming single Mogi source

Results of GNSS observation

• Merapi:

Inflation of deep magma reservoir just after 2010 eruption ~2*10⁶m³ of magma accumulated Potential for small eruptions

• Sinabung:

Inflation accompanied with deep VT Eq. activity and increase in inflation rate prior to magmatic eruptions and emergence of Lava dome.

- At Lava flow stage: discharge rate ~ GPS baseline length.
 - Source: 5km ESE from the summit

depth 6~12 km

Deflation 20~100x10⁶m³

GNSS Observation started at other three Volcanoes in 2015

Construction Finished in April 2015

Construction Finished in March 2015

Construction Finished in September 2015

GNSS observation: 6 volcanoes covered

Medan

Sinabung

For a better evaluation of volcanic activity

GPS stations in Merapi(since Dec. 2010)

3 stations around the volcanoe(2-5km apart) 27-32 km away from the base station.

Detection of inflation of Merapi volcano

Temporal change of slope distances after 2010 eruption

Deformation source location

Cross-section of the seismicity in Merapi volcano in 1991

Occurrence of small eruptions; ~2*10⁶m³ of magma accumulated _{Eruptions}

Magma supply system in Merapi

Inflation of deep magma reservoir suggests an existence of another deeper magma reservoir.

Magma migration process

Geophysical monitoring (Sinabung)

Displacement w.r.t. SNBG Nov. 2013 ~ June 2015

