An Overview, SIMLAR: GIS Based 2D Lahar Simulation

Akhyar Mushthofa¹, Sutikno Hardjosuwarno¹, Adam Pamudji Rahardjo², Jazaul Ikhsan³, Ibnu Rosyadi⁴, Perdi Bahri¹

¹Balai Sabo, Research Center for Water Resources, Ministry of Public Works and Housing ²Civil and Environmental Engineering Department, Faculty of Engineering, Univ. Gadjah Mada

³Civil and Environmental Engineering Department, Faculty of Engineering, UMY


⁴Faculty of Geography, Univ. Gadjah Mada

Background

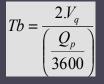
- Frequent lahar occurrence in Merapi Volcano Area
- Many importance infrastructures settle near or cross the river which is originated in Merapi Volcano.
- Many people live along the riverside.
- Hazard map can support the Mitigation plan.

Introduction to SIMLAR

- Stand for Simulasi Lahar (In Bahasa) or Lahar Simulation.
- GIS based 2D numerical simulation.
- Windows OS Platform with GUI for easy to use.
- Input topography by Digital Elevation Model (DEM).
- The output consist of flood area, flow velocity, sediment volume, river bed change.

The Simulation

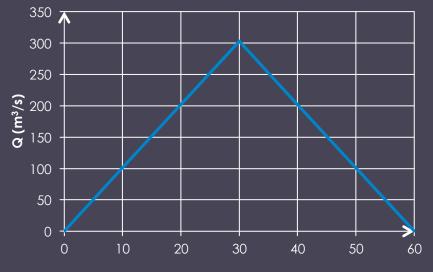
Case Study: Kali Putih


Boundary area for simulation sets at 1784×154 grids for x and y direction respectively. Inflow point determined at PU-D2 Sabodam, Kali Putih .

Hydrograph

Due to limited observed rainfallrunoff data, we currently use Triangle Shape Hydrograph Proposed by Sutikno and Sasahara (1996). This type of hydrograph generate from field observation.

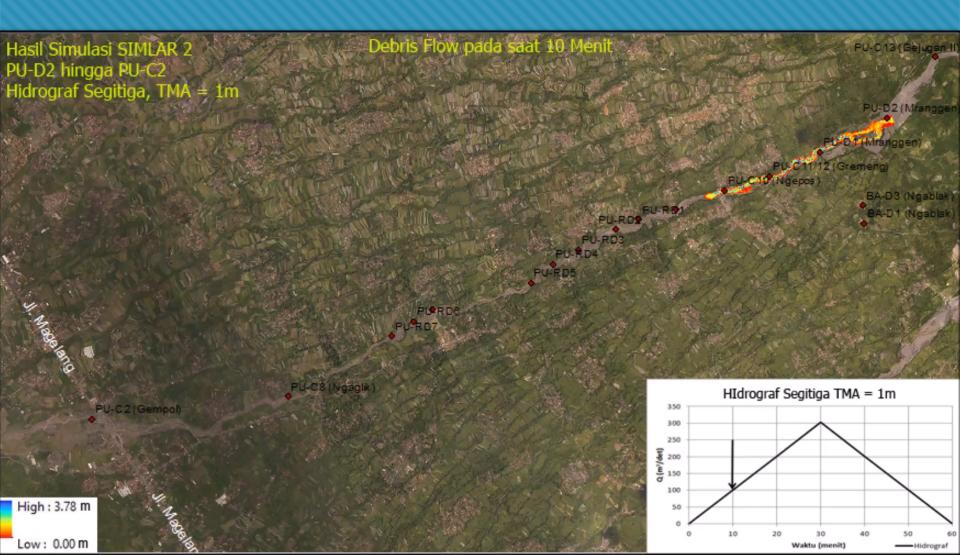
$$\ln Vq = \frac{\ln Q_p - \ln 0,0227}{0,7265}$$



Tp =

L

3600


Where V_q is volume of hydrograph (m³), Qp is peak discharge (m³/s), V is flow velocity (m/s), L is lenght of the watershed (m), and Tp is time to peak (s)

Time (minutes)

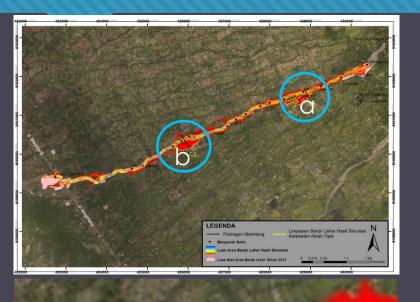
10 minutes of 1.00 meter water level at PU-D2, Kali Putih

Results

Discussion

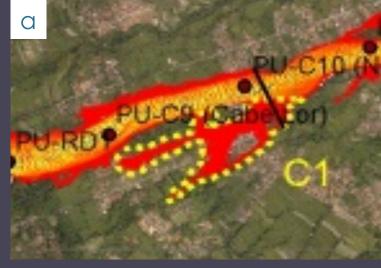
Flow Velocity

Interval cumulative (minutes)	Flow reach (m)	Velocity (m/s)	
10	2037,35	3,40	
20	3842,12	3,20	
30	5979,85	3,32	
40	7870,96	3,27	
50	9039,23	3,01	


Simulation results

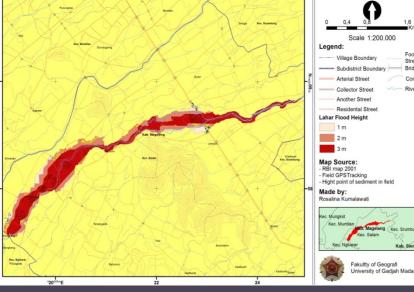
Observed by geophone (Sulistyani et. al, 2015)

No.	Date of occurrence	Name of Geophone Station	Correlation Coeff.	Correlation velocity (m/s)	Cross Correlation Velocity (m/s)
1	2/03/2011	PTH1 - PTH2	0,81	3,50	2,18
2	4/03/2011	PTH1 - PTH2	0,99	7,53	5,00
3	8/03/2011	PTH1 - PTH2	0,96	7,00	8,14
4	11/03/2011	PTH1 - PTH2	0,98	7,00	5,92
5	3/11/2011	PTH1 - PTH2	0,82	5,00	7,00


Discussion (2)

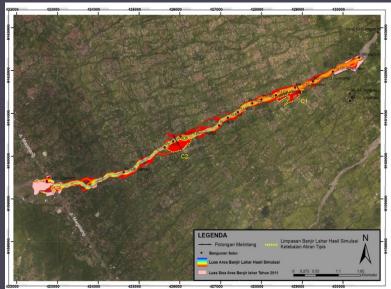
Flood Prone Area




b

Compare to 2011 lahar flood, the area deviation is about 0,46 km² or 27.38 %

Discussion (3)



Footster

Street Bridge Contu

Flow depth measurement in Kali Putih (Rosalina, et. al, 2012)

Maximum flow depth on simulation was 3.78 meters

Conclusion

- The flow velocity of the simulation lies within the range of velocity observed by geophone measurement.
- The flow depth of the simulation reaches 3.78 m, 0.78 m higher than flow depth measurement in 2011.
- The flood area deviation is 0.46 Km² or 27. 38% compare to field measurement in 2011.

Terima Kasih Arigato Gozaimasu Thank You