Numerical Simulation of Volcanic Ash Plume Dispersal from Kelud Volcano in Indonesia on 13 February 2014

> Hiroshi L. Tanaka Masato Iguchi Setsuya Nakada

(University of Tsukuba, Japan) (Kyoto University, Japan) (University of Tokyo, Japan)

Gunung Kelud Volcano S07°56′10 latitude 112°18′50 longitude 1731 m altitude

Eruption started at 2014/2/13 22:50 LTC 2014/2/13 15:50 UTC

17.056 km initial plume height $2.17 \times 10^7 \text{ ton/hr}$ emission rate

Volcanic Ash and Aviation Safety

Kelud Eruption Data provided by Dr. Iguchi

Local time	Emission (ton/hr)	Plume height (m)	Accumulation (ton)
(UTC+7 hr)			
2014/2/13 23:00	2.17E+07	17,056	2.2E+07
2014/2/14 00:00	1.41E+07	15,321	3.6E+07
2014/2/14 01:00	9.39E+06	13,839	4.5E+07
2014/2/14 02:00	6.37E+06	12,562	5.2E+07
2014/2/14 03:00	4.41E+06	11,453	5.6E+07
2014/2/14 04:00	3.09E+06	10,486	5.9E+07
2014/2/14 05:00	2.21E+06	9,636	6.1E+07
2014/2/14 06:00	1.60E+06	8,885	6.3E+07
2014/2/14 07:00	1.17E+06	8,219	6.4E+07
2014/2/14 08:00	8.65E+05	7,625	6.5E+07
2014/2/14 09:00	6.48E+05	7,093	6.6E+07

Seismic Record of Eruption

Estimation formulae for emission rate

$$V = k \left(E_{CT} + \beta E_{BL} + \epsilon A_{EX}^{2} \right)$$

V : Emission rate (10⁴ ton)

- **E**_{CT} : Energy for continuous tremor
- **E**_{BL} : Energy for **BL** type tremor
- **A_{EX}** : Amplitude of explosive tremor
- k : Coefficient for energy
- β : Coefficient for BL type
- $\boldsymbol{\epsilon}$: Coefficient for explosive type

$$V = 0.0018 (E_{CT} + 0.08E_{BL} + 0.16A_{EX}^{2})$$

PUFF model

Particle tracking Lagrangian Volcanos in Alaska

Governing Equation

$$r \downarrow i(0) = S, i=1 \sim M$$
 (t=0), $Sz(t)=z2-(z2-z1)\exp(-t/t0)$
 $r \downarrow i(t+\Delta t) = r \downarrow i(t) + V \Delta t + D \Delta t + G \Delta t$ (i=1 ~ $M, t>0$)

 $\mathcal{rI}(t)$: position vector of *i*-th particle at time t Δt : time step of the model (5 min) M : total number of particle

 $V = (\mathcal{U}, \mathcal{V}, \mathcal{W})$: wind velocity by GPV/JMA $D = (c \downarrow h, c \downarrow h, c \downarrow v), \text{ diffusion speed} \quad c \downarrow h' = c \downarrow h$

٩

- Puff Simulation using default values Horiz. dispersion = 20,000 Vertical dispersion = 10 Height = 16 km Mean Particle size = 0.01 mm (10 um)
- Validation of Puff Model: AVHRR Satellite image of volcanic cloud (Kliuchevskoi V. 1994)
- 3. "Tuning" input parameters to match the satellite image of the cloud: Dispersion = 2000
- 4. "Tuning" may provide relative information on the distribution of particles observed on satellite images

Wind Vector (700 hPa)

GPV/JMA 201404418

Scale: 10 m/s

Wind Vector (100 hPa)

GPV/JMA 201404418

Scale: 10 m/s

Wind Vector (500 hPa)

GPV/JMA 201404400

Wind Vector (100 hPa)

GPV/JMA 201404400

Animation of wind

X-Z section for Gunung_Kelud

Eruption: 1600 UTC 13 February 2014

Prediction: Every one hour from eruption

Y-Z section for Gunung_Kelud

Eruption: 1600 UTC 13 February 2014 Prediction: Every one hour from eruption

Gunung_Kelud Eruption: 1600 UTC 13 February 2014 Duration: + 56 hours Ash Fallout

Sequence of tephra dispersal from the Kelud volcano, produced based on satellite images by JMA. (by F. Maeno and others, under preparation)

Isopach maps of fallout tephra

Contours (0.1, 1, 4, 5 cm) are made based on geological survey and hearing. (by F. Maeno and others, under preparation)

Isopach maps of fallout tephra

Contours (0.1, 1, 4, 5 cm) are made based on geological survey and hearing. (by F. Maeno and others, under preparation)

X-Z section for Gunung_Kelud

Eruption: 1600 UTC 13 February 2014 Prediction: Every one hour from eruption

Y-Z section for Gunung_Kelud

Eruption: 1600 UTC 13 February 2014 Prediction: Every one hour from eruption

3-D image for Gunung_Kelud Eruption: 1600 UTC 13 February 2014 Prediction: +7 hours

3-D image for Gunung_Kelud Eruption: 1600 UTC 13 February 2014 Prediction: +1 hours

Gunung_Kelud Eruption: 16:00 UTC 13 February 2014 Prediction : 1 hour Maximum density log10(mg/m3)

Gunung_Kelud Eruption: 16:00 UTC 13 February 2014 Prediction : 3 hour Maximum density log10(mg/m3)

Gunung_Kelud Eruption: 16:00 UTC 13 February 2014 Prediction : 5 hour Maximum density log10(mg/m3)

Gunung_Kelud Eruption: 16:00 UTC 13 February 2014 Prediction : 7 hour Maximum density log10(mg/m3)

Summary

- 1. PUFF model is applied to Kelud volcano
- 2. Max particles: 5000/5min = 60000/hr
- 3. Emission rate: 2.17×10^7 ton/hr, 360 ton/particle
- 4. Fallout mass: 2.858×10^7 ton
- 5. Fallout of 100 g/m^2 extended to 200 km in west
- 6. Airborne ash of 4.0 mg/m^3 is identified
- 7. Initial umbrella shape is parameterized
- 8. Wind data is most sensitive to the prediction